Arduino Nano ATmega328 Development Board (Compatible)

Arduino Nano ATmega328 Development Board (Compatible)

分类: Development Board 当前有货
可在官方网站购买
欲了解更多详情,请游览我们的官方网站 jselectronics.com.my

详情

The Arduino Nano is a small, complete, and breadboard-friendly board based on the ATmega328. It has more or less the same functionality of the Arduino Duemilanove, but in a different package. It lacks only a DC power jack (An Expansion Shield will solved), and works with a Mini-B USB cable instead of a standard one.

What's new:

  • ATMEGA328 (more flash and ram memory)
  • Blue power LED is on the top
  • A0-A7 pins compatible with Arduino Stamp and Pro Mini
  • Two layers PCB
  • Lower cost
  • Easier to hack the Eagle file

 

Specifications

 

Power

The Arduino Nano can be powered via the Mini-B USB connection, 6-20V unregulated external power supply (pin 30), or 5V regulated external power supply (pin 27). The power source is automatically selected to the highest voltage source.

 

Memory

The ATmega328 has 32 KB, (also with 2 KB used for the bootloader). The ATmega328 has 2 KB of SRAM and 1 KB of EEPROM.

 

Input and Output

Each of the 14 digital pins on the Nano can be used as an input or output, using pinMode(), digitalWrite(), and digitalRead() functions. They operate at 5 volts. Each pin can provide or receive a maximum of 40 mA and has an internal pull-up resistor (disconnected by default) of 20-50 kOhms. In addition, some pins have specialized functions:

The Nano has 8 analog inputs, each of which provides 10 bits of resolution (i.e. 1024 different values). By default they measure from ground to 5 volts, though it is possible to change the upper end of their range using the analogReference() function. Analog pins 6 and 7 cannot be used as digital pins. Additionally, some pins have specialized functionality:

There are a couple of other pins on the board:

 

Communication

The Arduino Nano has a number of facilities for communicating with a computer, another Arduino, or other microcontrollers. The ATmega168 and ATmega328 provide UART TTL (5V) serial communication, which is available on digital pins 0 (RX) and 1 (TX). An CH340G on the board channels this serial communication over USB and the FTDI drivers (included with the Arduino software) provide a virtual com port to software on the computer. The Arduino software includes a serial monitor which allows simple textual data to be sent to and from the Arduino board. The RX and TX LEDs on the board will flash when data is being transmitted via the FTDI chip and USB connection to the computer (but not for serial communication on pins 0 and 1).

A SoftwareSerial library allows for serial communication on any of the Nano's digital pins.

The ATmega328 also support I2C (TWI) and SPI communication. The Arduino software includes a Wire library to simplify use of the I2C bus.

 

Programming

The Arduino Nano can be programmed with the Arduino software. Select ''Arduino Diecimila, Duemilanove, or Nano w/ ATmega168'' or ''Arduino Duemilanove or Nano w/ ATmega328'' from the Tools > Board menu (according to the microcontroller on your board).

The ATmega168 or ATmega328 on the Arduino Nano comes preburned with a bootloader that allows you to upload new code to it without the use of an external hardware programmer. It communicates using the originalSTK500 protocol.

You can also bypass the bootloader and program the microcontroller through the ICSP (In-Circuit Serial Programming) header using Arduino ISP or similar.

 

Automatic (Software) Reset

Rather than requiring a physical press of the reset button before an upload, the Arduino Nano is designed in a way that allows it to be reset by software running on a connected computer. One of the hardware flow control lines (DTR) of the FT232RL is connected to the reset line of the ATmega328 via a 100 nanofarad capacitor. When this line is asserted (taken low), the reset line drops long enough to reset the chip. The Arduino software uses this capability to allow you to upload code by simply pressing the upload button in the Arduino environment. This means that the bootloader can have a shorter timeout, as the lowering of DTR can be well-coordinated with the start of the upload.

This setup has other implications. When the Nano is connected to either a computer running Mac OS X or Linux, it resets each time a connection is made to it from software (via USB). For the following half-second or so, the bootloader is running on the Nano. While it is programmed to ignore malformed data (i.e. anything besides an upload of new code), it will intercept the first few bytes of data sent to the board after a connection is opened. If a sketch running on the board receives one-time configuration or other data when it first starts, make sure that the software with which it communicates waits a second after opening the connection and before sending this data.

更多 Jit Sen Electronics Sdn Bhd 相关资料
Jit Sen Electronics Sdn Bhd
Jit Sen Electronics Sdn Bhd Electronic Components Supplier Melaka, Electrical Parts Supply Malaysia, Semiconductors Supplies ~ Jit Sen Electronics Sdn Bhd